Book Review: $J$ Contractive matrix functions, reproducing kernel Hilbert spaces and interpolation

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distance Functions for Reproducing Kernel Hilbert Spaces

Suppose H is a space of functions on X. If H is a Hilbert space with reproducing kernel then that structure of H can be used to build distance functions on X. We describe some of those and their interpretations and interrelations. We also present some computational properties and examples.

متن کامل

Interpolation for Multipliers on Reproducing Kernel Hilbert Spaces

All solutions of a tangential interpolation problem for contractive multipliers between two reproducing kernel Hilbert spaces of analytic vectorvalued functions are characterized in terms of certain positive kernels. In a special important case when the spaces consist of analytic functions on the unit ball of Cd and the reproducing kernels are of the form (1 − 〈z, w〉−1)Ip and (1−〈z,w〉)−1Iq, the...

متن کامل

Real reproducing kernel Hilbert spaces

P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...

متن کامل

Some Properties of Reproducing Kernel Banach and Hilbert Spaces

This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...

متن کامل

Reproducing kernel Hilbert spaces and Mercer theorem

We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for p = 2 we show that the spectral decomposition of this integral operator gives a complete description of the reproducing kernel.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1990

ISSN: 0273-0979

DOI: 10.1090/s0273-0979-1990-15976-2